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▪ Supervised learning

▪ Self-supervised learning

▪ Unsupervised learning

Later:

▪ Transfer and curriculum 
learning

▪ Continual learning 

Can one also learn by interacting with 
the changing world? 

- No labels (not supervised)

- But reward/punishment …

Learning paradigms so far in NX-414



Decision-making and behavior

Perceptual decision-making Value-based decision

• Sensory evidence matters • Costs/benefits
• Value (utility)

Ernst & Banks, Nature 2002

Reminder:
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Reinforcement learning

𝑠𝑡

𝑠𝑡+1

𝑠𝑡+2

𝑎𝑡

𝑎𝑡+1

𝑎𝑡+2

𝜋 𝑎𝑡 𝑠𝑡

𝜋 𝑎𝑡+1 𝑠𝑡+1

𝜋 𝑎𝑡+2 𝑠𝑡+2

𝑝 𝑠𝑡+1 𝑠𝑡, 𝑎𝑡

𝑝 𝑠𝑡+2 𝑠𝑡+1, 𝑎𝑡+1

action 𝑎𝑡

state 𝑠𝑡
reward 𝑟𝑡

agent environment

Markov Decision Process

𝑝 𝑠𝑡+1 𝑠𝑡, 𝑎𝑡

𝜋 𝑎𝑡 𝑠𝑡

How should one act
(to maximize reward)?

policy



Reinforcement learning: Example

Sutton & Barto 2018

S = {high,low} 

A(low) = {search, wait, recharge} 

A(high) = {search, wait} 

(S, A, R, P)



▪ Given a Markov decision process (S, A, R, P) find the policy 𝜋 𝑎 𝑠 ,
which maximizes the cumulative future reward

▪ (Typically) the transition probability 𝑝 𝑠’, 𝑟 𝑠, 𝑎 is unknown

▪ RL poses a challenging credit-assignment problem

Reinforcement Learning

Action-value methods
Select the action with the 

highest expected 
cumulative reward

Policy-gradient methods
Update the policy in the 

direction which maximizes 
the expected cum. reward

Cumulative reward



Value and action-value functions

Sutton & Barto 2018

State-value function

Quality function / state-action value function



Bellman Equation

Sutton & Barto 2018
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Optimal value functions and policies

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑞∗(𝑠, 𝑎)

Give a state-action function, the optimal (greedy) policy is given by:

Sutton & Barto 2018



Bellman optimality equations 

Sutton & Barto 2018



Temporal difference learning

𝑉 𝑠𝑡 ←𝑉 𝑠𝑡 + 𝛼𝑡(𝑅𝑡 + 𝛾𝑉 𝑠𝑡+1 − 𝑉 𝑠𝑡 )

Core idea for a learning algorithm: 
use difference in expected and received reward to update the value function:

Values are updated based on previous values plus reward prediction error weighed by learning rate



Schultz, Dayan, Montague,  Science 1997

𝑉 𝑠𝑡 ←𝑉 𝑠𝑡 + 𝛼𝑡(𝑅𝑡 + 𝛾𝑉 𝑠𝑡+1 − 𝑉 𝑠𝑡 )

Dopamine?



Dopamine as temporal difference (TD) 
error: reward prediction errors

Schultz, Dayan, Montague,  Science 1997



Given a Markov decision process (S, A, R, P) find the policy 𝜋(𝑎|𝑠)
which maximizes the cumulative future discounted reward

Reinforcement Learning

෍

𝑡=0

∞

𝛾𝑡𝑅𝑡

𝜋(𝑎|𝑠)

TD learning (and related algorithms) have helped us model many basic learning paradigms in a satisfactory way. 
But does it scale? 



▪ The computational and memory 
requirements (even) for games is 
enormous! 

Fundamental Challenge and representation learning…

Mnih et al., Nature 2013 (Deep Mind)

Parameters



“DQN” algorithm

Mnih et al., Nature 2013 (Deep Mind)



DQN learns stable Q-functions

Mnih et al., Nature 2013 (Deep Mind)

The player-controlled laser 

cannon shoots the aliens as 

they descend (from Wiki).

The player uses a submarine to shoot 

at enemies and rescue divers (from 

Wiki).



DQN performs at superhuman level for some games

Mnih et al., Nature 2013 (Deep Mind)

DQN vs. humans: The performance of DQN is normalized with respect to a 
professional human games tester (that is, 100% level) and random play (that 
is, 0% level). Note that the normalized performance of DQN, expressed as a 
percentage, is calculated as: 100 × (DQN score − random play score)/(human 
score − random play score). Audio output was disabled for both human 
players and agents. Error bars indicate s.d. across the 30 evaluation episodes, 
starting with different initial conditions.

• DQN outperformed the best existing reinforcement learning 
methods on 43 of the games without incorporating any of the 
additional prior knowledge about Atari 2600 games used by other 
approaches

• DQN outperformed human gamers for many games



DQN was just the start … 

▪ AlphaGo: combined deep neural networks with advanced search algorithms. It 
won against the best human player (Lee Sedol). Check out: 
https://deepmind.google/technologies/alphago/

▪ Check out Chapters 16 & 17 in Sutton & Barto’s textbook: 
http://incompleteideas.net/book/the-book.html

https://deepmind.google/technologies/alphago/
http://incompleteideas.net/book/the-book.html
http://incompleteideas.net/book/the-book.html
http://incompleteideas.net/book/the-book.html


RL for continuous control



A typical reinforcement problem (continuous control)

Ant (OpenAI Gym)

▪ Quadruped robot

▪ Action size: 8

▪ State size: 28

▪ Objective: run as 
fast as possible



Continuous control…

𝒔𝑡
Proprioceptive 

state

𝒂𝑡
Action

𝜋 𝐴 𝑆, )𝜃

Parametrize the policy… 



Given a parametrization 𝜃 of the policy, find an iterative method of the form 

𝜃𝑡+1 = 𝜃𝑡 + 𝛼 ෣∇ J(𝜃𝑡)

For cumulative future rewards:

𝐽 𝜃 = 𝑣𝜋𝜃 𝑠0 = 𝔼 อ෍

𝑡=0

∞

𝛾𝑡𝑅𝑡 𝑆0 = 𝑠0

Policy Gradient Methods



The following proportionality relation for the gradient of J holds:

∇𝐽 𝜃 ∝෍

𝑠

𝜇 𝑠 ෍

𝑎

𝑞𝜋 𝑠, 𝑎 ∇𝜋 𝑎 𝑠, 𝜃 = 𝔼𝜋[𝑎𝜋 (S, A)∇ ln𝜋 𝐴 𝑆, )𝜃 ]

𝜇 is the distribution of the state under policy 𝜋

𝑞 is the state-action value

𝑎𝜋 = 𝑞𝜋 − 𝑣𝜋 is the advantage function

Policy Gradient Theorem



▪ A strong & popular ”policy gradient 
method” 

▪ Proposed by Haarnoja et al. 2018

▪ Off-policy actor-critic algorithm

▪ Actor is the policy, critic learns Q.

▪ Agents maximize expected reward 
and also entropy (i.e. succeeding 
at the task while acting as 
randomly as possible)

▪ D is the distribution of sampled 
states and actions (replay buffer)

Soft actor-critic (SAC) algorithm 



Continuous control with policy-gradient methods  

Chiappa, Marin Vargas, Mathis, Neurips 2022 /arxiv

SAC baseline from:



Continuous control with policy-gradient methods 



Continuous control with policy-gradient methods 



Better exploration?



Learning sensorimotor skills

Isotropic exploratory noise

Chiappa, Marin Vargas, Huang, Mathis, NeurIPS 2023



Basic intuition for better exploration

Chiappa, Marin Vargas, Huang, Mathis, NeurIPS 2023



Latent time-correlated exploration

State-Dependent Exploration

Chiappa, Marin Vargas, Huang, Mathis, NeurIPS 2023



Benchmarking learning to locomote

Chiappa, Marin Vargas, Huang, Mathis, NeurIPS 2023



Reorient task 
In MyoSuite/Mujoco

Early Lattice 
training performance

39D action space



Reorient task 
In MyoSuite/Mujoco

Late Lattice 
training performance



Pen task 
In MyoSuite/Mujoco

Late Lattice 
training performance



Object manipulation learning curves

Learning iterations
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Chiappa, Marin Vargas, Huang, Mathis, NeurIPS 2023



Lattice learns more energy efficient solutions

Chiappa, Marin Vargas, Huang, Mathis, NeurIPS 2023



Optimal control

+ can handle constraints & finds 
optimal, adaptive strategies

- computationally intensive

- requires a good model of the 
system

Reinforcement learning

+ flexible to design

+ finds novel solutions 

+ adaptive to changes in the 
environment

- large-scale simulation 

- high sample complexity

Different approaches to motor control



▪ Bellman optimality equations describe a consistency requirement 
that value and state-value functions need to satisfy

▪ They motivate many algorithms (Q-learning, TD-learning, Fix-point 
perspective, …) 

▪ Parametrizing policy/q-functions with neural networks 

▪ For continuous control, policy gradient methods are much more 
powerful

▪ Efficient exploration for large action spaces is an active area of 
research. 

▪ Reinforcement learning provides a theory for adaptive behavior and 
adaptive, optimizing control

Take-home messages
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