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=PrL

Learning paradigms so far in NX-414

= Supervised learning Can one also learn by interacting with
= Self-supervised learning the changing world?
= Unsupervised learning

Later: - No labels (not supervised)

« Transfer and curriculum - But reward/punishment ...

learning
= Continual learning



=PrL  Decision-making and behavior

Perceptual decision-making

Left?
*— \Motion

———> Right?

Reminder:

Sensory evidence matters

Ernst?& Banks, Nature 2002



=PrL  Decision-making and behavior

Perceptual decision-making

Left?
*— \Motion

———> Right?

Sensory evidence matters

Value-based decision

Costs/benefits
Value (utility)



=PFL Reinforcement learning

action a;

How should one act
(to maximize reward)?

policy n(atlst) -
agent

environment
'\ / p(5t+1|5t; at)

Markov Decision Process
state s;

reward 1

St
n(aclsy)
At
P(Se41lse ap)
St+1
m(ap41]Se41)
At+1
P(SesalSes1, rer)
St+2
m(agizlSee2)

Aiy2



Reinforcement leaming: Example

(SI AI RI P)

S = {high,low}

A(low) = {search, wait, recharge}

A(high) = {search, wait}
8 a s’ p(s'|s,a) | r(s,a,s’)
high search high (8] Tsearch
high  search low l -« Tsearch
low search high 1—-7 =
low search low B Tsearch
high wait high | 1 Twait
high wait low 0 -
low wait high | 0 -
low wait low 1 Twait
low recharge high | 1 0
low recharge low 0 -

1; Tfrai: 1—,6, _3 S 18; TSfarch
[ e i \

1,0 recharge

|high = 1 ow
/* \_
|'f.
| search Waltj

1 s Twait

1- &, T'gearch

Sutton & Barto 2018



=PFL  Reinforcement Learning

= Given a Markov decision process (S, A, R, P) find the policy n(als),
which maximizes the cumulative future reward

= (Typically) the transition probability p(s’, r|s, a) is unknown
= RL poses a challenging credit-assignment problem

T
Cumulativereward  (G; = E fyk_t_le

k=t+1
Action-value methods Policy-gradient methods
Select the action with the Update the policy in the
highest expected direction which maximizes
cumulative reward the expected cum. reward




=PFL  Value and action-value functions

State-value function

Vr(8) = Ex|) 7*Rijks1 | Si=s|, foralls€s
k=0

Quality function / state-action value function

o0

Q‘?T(S}a-) = IE?T Z’Yth—l—k—l—l St:SjAt:a
k=0

Sutton & Barto 2018



=PFL  Bellman Equation )

: PN
G: = Z '}’k_t_le 3

k=t+1 D r
OO OO O Of
’U-rr(S) = Ew[Gt | St =S] Backup diagram for v,

= Er[Rt+1 + YGiy1 | Si=s]

Sutton & Barto 2018



=PFL  Bellman Equation )

T A
Gi= Y R 3

k=t+1 D r
OO OO O Of
’U-.rr(S) = Ew[Gt | St =S] Backup diagram for v,

= Ex(Rt11 +7Giy1 | St=s]
=Y (als) " p(s',715,0) [r + VEA[Ges1|S11 =]

- qu(a,|3) Zp(s’,ﬂs, a) ['r -}—'}fvﬂ(s’)], for all s € 8,

Sutton & Barto 2018



=PFL  Optimal value functions and policies
V«(8) = max v, (s)

¢+ (8, a) = max gr(s,a)

Give a state-action function, the optimal (greedy) policy is given by:

n(s) = argmax, q.(s,a)

Sutton & Barto 2018



=PFL  Bellman optimality equations

’U*(S) = mng[&+1 + ’)’U*(St+1) | StZS,At :CL]

= mngp(s’, r|s,a) [r + 'yv*(s’)] :

s'r

0.(5,0) = E[Ress + ymaxg.(Sesn, ) | S=5, Av=a]

— ZP(S,, 7’|S, a) [T -+ ’)’ma,'XQ*(Sla (L’)] 3

/
s',r

Sutton & Barto 2018



=PFL  Temporal difference leaming

(8) = mc?x]E[RtH + Yv,(Sii1) | Si=s, Ay =al

= maxy_ p(s',7|s,a) ['r + yu*(s’)] :

8T

Core idea for a learning algorithm:
use difference in expected and received reward to update the value function:

V(st) «V(se) +ar(Re + YV(spy1) — V(sp))

Values are updated based on previous values plus reward prediction error weighed by learning rate



A Neural Substrate of
Prediction and Reward

Wolfram Schultz, Peter Dayan, P. Read Montague*

The capacity to predict future events permits a creature to detect, model, and manipulate
the causal structure of its interactions with its environment. Behavioral experiments
suggest that learning is driven by changes in the expectations about future salient events
such as rewards and punishments. Physiological work has recently complemented these
studies by identifying dopaminergic neurons in the primate whose fluctuating output
apparently signals changes or errors in the predictions of future salient and rewarding
events. Taken together, these findings can be understood through quantitative theories
of adaptive optimizing control.

V(sy) « V(s + at\(Rt + YV (Sp41) — V(St)))

|

Dopamine? Schultz, Dayan, Montague, Science 1997




=pr. Dopamine as temporal difference (TD)
error: reward prediction errors

No prediction
Reward occurs

Reward predicted
Reward occurs

Reward predicted
No reward occurs

Schultz, Dayan, Montague, Science 1997



=PFL  Reinforcement Learning

Given a Markov decision process (S, A, R, P) find the policy m(a|s)
which maximizes the cumulative future discounted reward

?
m(als) a

"—

TD learning (and related algorithms) have helped us model many basic learning paradigms in a satisfactory way.
= But does it scale?



=PFL Fundamental Challenge and representation learning...

Parameters 91

g

Convolution Convolution Fully connected Fully connec t
v - v

= The computational and memory
requirements (even) for games is
enormous!

O
BEaGEEEEEE

égo

O
BEISEER
olojolojo

¢

B 2

L; (91) - Es,awp(-) [(yz - Q (8? a, 93))2]

V(?i L; (92) = Es,arvp(-);s’wg [(T + ’Ynzlma’JX Q(Sln CL,; gi—l) o Q(Sa a, 92)) V@z‘ Q(Sa a, 9’&)]

Mnih et al., Nature 2013 (Deep Mind)



EPrL  “DQN” algorithm

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x;} and preprocessed sequenced ¢ = ¢(s1)
fort =1,7T do
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢), a; )
Execute action a; in emulator and observe reward r, and image x; 1
Set 5441 = S¢, a¢, T¢y1 and preprocess ¢y11 = P(S41)
Store transition (¢, at, ¢, P¢41) in D
Sample random minibatch of transitions (¢;, a;, r;, ¢;+1) from D

Sety, — d T for terminal ¢,
Y= r; +ymaxy Q(¢;41,a";6) for non-terminal ¢; 1
Perform a gradient descent step on (y; — Q(¢;,a;;0))” according to equation 3
end for
end for

Mnih et al., Nature 2013 (Deep Mind)



=P7L DQN leams stable Q-functions

M A" A
. aln

CREDIT @@

The player-controlled laser
cannon shoots the aliens as
they descend (from Wiki).

Average score per episode

(1]

Average action value (Q)
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The player uses a submarine to shoot
at enemies and rescue divers (from
Wiki).

Mnih et al., Nature 2013 (Deep Mind)



=PFL  DQN performs at superhuman level for some games

Video Pinball
Boxing
Breakout

Star Gunner
Robotank
Atlantis

Crazy Climber

Demon Attack
Name This Game

Road Runner
Kangaroo

Pong

Space Invaders
Beam Rider
Tutankham
Kung-Fu Master

Time Pilot

Fishing Derby
Up and Down
Ice Hockey

Asterix

Battle Zone

Wizard of Wor
Chopper Command
Centipede

Bank Heist

River Raid

Venture
Seaquest
Double Dunk
Bowling

Ms. Pac-Man
Asteroids
Frostbite
Gravitar
Private Eye

Montezuma's Revenge ||

|

§3%

|§

i

|

y

L

I

i
T

At human-level or above

_ "ili'mil

Below human-level

Best linear learner
T T T () () 1

T T
300 400 500 600 1,000 4,500%

DQN vs. humans: The performance of DQN is normalized with respect to a
professional human games tester (that is, 100% level) and random play (that
is, 0% level). Note that the normalized performance of DQN, expressed as a
percentage, is calculated as: 100 x (DQN score — random play score)/(human
score - random play score). Audio output was disabled for both human
players and agents. Error bars indicate s.d. across the 30 evaluation episodes,
starting with different initial conditions.

* DOQN outperformed the best existing reinforcement learning
methods on 43 of the games without incorporating any of the
additional prior knowledge about Atari 2600 games used by other
approaches

* DOQN outperformed human gamers for many games

Mnih et al., Nature 2013 (Deep Mind)



=PFL  DQN was just the start...

ALPHAGDO

!; - ) ’ W & \

e

= AlphaGo: combined deep neural networks with advanced search algorithms. It
won against the best human player (Lee Sedol). Check out:

= Check out Chapters 16 & 17 in Sutton & Barto’s textbook:


https://deepmind.google/technologies/alphago/
http://incompleteideas.net/book/the-book.html
http://incompleteideas.net/book/the-book.html
http://incompleteideas.net/book/the-book.html

=PrL

RL for continuous control




=PFL A typical reinforcement problem (continuous control)

Ant (OpenAl Gym)
= Quadruped robot
= Action size: 8
= State size: 28

= Objective: run as
fast as possible




=PFL  Continuous control...

Parametrize the policy...

m(A|S, 0)

St at
Proprioceptive Action
state



=PFL Policy Gradient Methods

Given a parametrization 6 of the policy, find an iterative method of the form

Orv1 =0 +aV](6;)

For cumulative future rewards:

J(6) = Vne(So) =E [z VER:| So = So]
t=0




=P'L  Policy Gradient Theorem

The following proportionality relation for the gradient of ] holds:

VJ(6) Z u(s) Z qr(s,a)Vr(als,8) = Ex[a, (S,A)VInn(AlS,6)]

u is the distribution of the state under policy «
q is the state-action value
a; = q; — vy IS the advantage function



=PFL  Soft actor-critic (SAC) algorithm

Algorithm 1 Soft Actor-Critic

Initialize parameter vectors 1), 0, 0, é.
for each iteration do

A e e = A strong & popular "policy gradient

a; ~ Ty(ars;) method”

SeL1 ™ p(St+1|St: at) .

D < DU {(ss,as, (s, a),8t41)} = Proposed by Haarnoja et al. 2018
end for : i :

i e O i = Off-policy actor-critic algorithm
WP — Av Vv (@) = Actor is the policy, critic learns Q.
0i < 0;: — AqVo,Jo(0;) fori € {1,2} = Agents maximize expected reward
¢+ ¢ — AV Jz(9) and also entropy (i.e. succeeding
YT+ (1-7) at the task while acting as

gl}d for randomly as possible)

ena 1or

= D is the distribution of sampled
states and actions (replay buffer)



=PFL Continuous control with policy-gradient methods

e — > - - . 2500
= .
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SAC baseline from:
Chiappa, Marin Vargas, Mathis, Neurips 2022 /arxiv



=PrL

Continuous control with policy-gradient methods

Reward (+ S.E.M.)
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=PFL Continuous control with policy-gradient methods

%ﬁ-- 2 ET u-xx ==

Reward (* S.E.M.)
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=PrL

Better exploration?




20M

=PFL Leamni imotor skill
arning sensorimotor skills
— SAC

§ '.‘ Ant \ Hopper - \/\> Walker S Half cheetah f("' Humanoid
£ “ K

3K 2K
E oK 2K

2K
g 1K 1Kl . 1K
31k
? 0 0 0
8 0 5M 10M 0 5M 10M 15M 0 5M 10M 15M 0 5M 0 10M

Number of steps

A Default a=Wx+¢

Isotropic exploratory noise

Chiappa, Marin Vargas, Huang, Mathis, NeurlPS 2023



=PFL  Basic intuition for better exploration

A B . . . C © Action noise a = Wax+ ¢
, Action Action noise @ Latent noise a = W (x +¢€)
EE 3
15 .
€1 . [ 61. l @ 0.030
€9 4 ©
€21 T 0.025 1
wv
€3- 2 @ 0.020
[e]
fl- . . fi » o 0.015
-5 B
f?‘ 5 0.010
-10 | -2 =
fs /s g
I f 5, 0.005 p=32-10""

—

€1€2€3f1f2f3 é1é2é3fl.f2f3

Chiappa, Marin Vargas, Huang, Mathis, NeurlPS 2023



=PFL  Latent time-comrelated exploration

LATTICE - LATent TiIme-Correlated Exploration

Latent noise Perturbation matrices
x / Na| Pa | (Pa)ij ~N(0,(Sa)iy )
W N,

Nel Pe | (Px)ij ~N(0,(S%)ij)

State-Dependent Exploration

gSDE  a = (W + P,)x

Default a = Wx + ¢

Time + Action

|
Chiappa, Marin Vargas, Huang, Mathis, NeurlPS 2023



=P*L  Benchmarking leaming to locomote

e SAC m QSDE-SAC T =8 | attice-SAC T=1 === |attice-SACT=38
= QSDE-SACT=4 gSDE-SAC episode === |attice-SAC T =4 Lattice-SAC episode
5 \ walk Half cheetah /D H id
@ K alker i&j{ alt cheeta (\ umanaol
£ 4K ’
ie; i
Ny
©
S
L 2K
Q
=,
S b k
E— 0 5M 5M 10M 15M O 5M 0 10M 20M

Number of steps

J

Time + Action

LATTICE a = (W + P, + WP )x

gSDE  a = (W + P,)x

)
£
—

Default a=Wx+¢ ’ y

|
Chiappa, Marin Vargas, Huang, Mathis, NeurlPS 2023
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=PFL Object manipulation leaming curves

e PPQ  me= QSDE-PPO T=4 === Lattice-PPOT=1
Reorient Baoding

8 0.6 ’

> e
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|
Chiappa, Marin Vargas, Huang, Mathis, NeurlPS 2023
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=PFL  Lattice leams more energy efficient solutions

Reorient

Finger pose Finger reach Hand pose Hand reach Elbow pose Baoding

30%
e‘
o) al
— 20% - ,
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pram V2 .
© 10%- Pen, Reorienfy
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S 0%- Elbow pos "
S, Finger pOse,
ge;
E -10% ,(@‘
o®
= <0
Q Q
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’30% T T T T T T T
-60%  -40%  -20% 0% 20% 40% 60%

Energy saving (relative)

|
Chiappa, Marin Vargas, Huang, Mathis, NeurlPS 2023



=PrL

Different approaches to motor control

Optimal control Reinforcement learning

+ can handle constraints & finds + flexible to design

optimal, adaptive strategies + finds novel solutions

- computationally intensive + adaptive to changes in the
- requires a good model of the environment

system - large-scale simulation

- high sample complexity



=PFL  Take-home messages

= Bellman optimality equations describe a consistency requirement
that value and state-value functions need to satisfy

= They motivate many algorithms (Q-learning, TD-learning, Fix-point
perspective, ...)

= Parametrizing policy/g-functions with neural networks

= For continuous control, policy gradient methods are much more
powerful

= Efficient exploration for large action spaces is an active area of
research.

= Reinforcement learning provides a theory for adaptive behavior and
adaptive, optimizing control
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